If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4s^2-4s-3=0
a = 4; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·4·(-3)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8}{2*4}=\frac{-4}{8} =-1/2 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8}{2*4}=\frac{12}{8} =1+1/2 $
| X(x^2)-x+12=0 | | 2(2y+3)^2-9=23 | | 5-x+3=3x | | X^3-x+12=0 | | 2y+2.11/8y=190 | | x+26-8x=4(2-x | | 2y+2.11/8y=190,y=40 | | 9x−8=37 | | (12x-9)-(7x+3)=2(6x-1) | | x+19=-(6x+4) | | 15-8(2a+2a)=16a-17 | | e+8=(-28)-3e | | -1/5x=-6 | | 3-3(2m-3)=-12 | | -a=-5/6 | | (7x+9)^2+15=−20 | | (7y+9)^2+15=−20 | | 100x^2−64=0 | | 100t^2−64=0 | | 100t2−64=0 | | 5/9x=-15/8 | | 9x-32=42 | | 21/9=84/t | | (4x+1)(x-3)=4x2-11x-3 | | (4n+25)+(2n+36)=180 | | (x+1)^2=x^2+6 | | 5/9x+2=3/8 | | 5(9r)-2(1-r)=1 | | -3=7y(2y-7) | | 16x^2+32x-128=0 | | x6+4=15x6+4=15 | | 5/3=d/10 |